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Abstract
We study pairwise quantum entanglement in systems of fermions itinerant in
a lattice from a second-quantized perspective. Entanglement in the grand-
canonical ensemble is studied, both for energy eigenstates and for the thermal
state. Relations between entanglement and superconducting correlations are
discussed in a BCS-like model and for η-pair superconductivity.

PACS numbers: 03.67.Lx, 03.65.Fd

1. Introduction

The concept of quantum entanglement [1] is believed to play an essential role in quantum
information processing (QIP) [2]. As a consequence much effort has been devoted to the
characterization of entanglement [3]. The very definition of entanglement relies on the tensor
product structure of the state-space of a composite quantum system. Unfortunately, due to
quantum statistics, such a structure does not appear in an obvious fashion for systems of
indistinguishable particles, i.e. bosons or fermions. Indeed for these systems, in view of the
(anti)symmetrization postulate, one has to restrict to a subspace of the N-fold tensor product
of the single particle spaces. Such a subspace, e.g., the totally anti-symmetric one, does not
have a naturally selected tensor product structure. It turns out that the notion of entanglement
is affected for systems of indistinguishable particles by some ambiguity.

Since it is of direct relevance to several implementation proposals for QIP, e.g., quantum-
dots based, this issue has been very recently addressed in the literature [4–10]. A quantum
computation model was proposed [11] by using L local fermionic modes (LFMs)— sites which
can be either empty or occupied by a fermion. Moreover, the use of quantum statistics for
some QIP protocols has been analysed [12].

Along the same line of realizing a bridge between quantum information science and
conventional many-body theory, entanglement in magnetic systems has been discussed
[13–17]. In particular, entanglement in both the ground state [13, 14] and thermal state
[15–17] of a spin-1/2 Heisenberg spin chain has been analysed in the literature. In this
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situation the system state is given by Gibb’s density operator ρT = exp(−H/kT )/Z, where
Z = tr[exp(−H/kT )] is the partition function, H the system Hamiltonian, k is Boltzmann’s
constant which we henceforth will take equal to 1 and T is the temperature. As ρ(T ) represents
a thermal state, the entanglement in the state is called thermal entanglement [15]. Finally, the
intriguing issue of the relation between entanglement and quantum phase transition [18] has
been addressed in a few quite recent papers [19, 20].

In this paper we will explore the relations between entanglement and (super)conducting
correlations by following the spirit of [7]. It is important to stress that due to the lack of
measure of genuine many-body entanglement, we restrict ourselves to pairwise entanglement
in this paper. Note that in this approach the subsystems are given by modes and not by particles.
This is therefore an essentially second-quantized approach [23].

In section 2 basic definitions are given and the mapping scheme between LFMs and
qubits introduced in [7] is briefly recalled. In section 3 the entanglement in both eigenstates
and thermal state is studied for free fermions hopping in a lattice. In section 4 the relations
between pairwise entanglement and superconducting correlations are discussed for two types of
superconductivity, BCS-like superconductivity [21] and the so-called η-pair superconductivity
[22]. Section 5 contains the conclusions.

2. Lattice fermions

Let us start by recalling some basic facts about (spinless) fermions on a lattice. In the second-
quantized picture the basic objects are the creation and annihilation operators c

†
l and cl of the

lth LFM. They satisfy the canonical anti-commutation relations

[ci, cj ]+ = 0
[
ci, c

†
j

]
+ = δij . (1)

The Hilbert space naturally associated with the L LFMs, known as Fock space HF , is spanned
by 2L basis vectors |n1, . . . , nL〉 := ∏L

l=1

(
c
†
l

)nl |0〉 (nl = 0, 1 ∀l).

From the above occupation-number basis it should be evident that HF is isomorphic to
the L-qubit space. This is easily seen by defining the mapping [7]

� :=
L∏

l=1

(
c
†
l

)nl |0〉 �→ L⊗
l=1

|nl〉 = L⊗
l=1

(
σ +

l

)nl |0〉 (2)

where σ +
l is the raising operator of lth qubit. This is a Hilbert-space isomorphism between

HF and C
⊗L. By means of this identification one can discuss entanglement of fermions

by studying the entanglement of qubits. Clearly this entanglement is strongly related to the
mapping (2) and is by no means unique. By defining new fermionic modes by automorphisms
of the algebra defined by equation (1) one gives rise to different mappings between HF and
C

⊗L with an associated different entanglement. This simple fact is one of the manifestations
of the relativity of entanglement [24].

It is useful to see how the mapping (2) looks on the operator algebra level. From the
relation c

†
l |n1, . . . , nL〉 = δnl,0(−1)

∑l−1
k=1 nk |n1, . . . , nl−1, 1, nl+1, . . . , nL〉, it follows that

c
†
l �→ σ +

l

l−1∏
k=1

(−σ z
k

)
(3)

where σ z
k is the z component of the usual Pauli matrices for the kth qubit. This algebra

isomorphism is quite well known in the condensed matter literature and is referred to as
the Jordan–Wigner transformation [25]. Note that the inverse of equation (3) is given by
σ
†
l �→ c

†
l

∏l−1
k=1 exp

(
iπc

†
kck

)
. We see that due to the non-local character of the mapping
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�(�−1), even simple fermionic (spin) models can be transformed into non-trivial spin
(fermionic) models. On the other hand, the fermionic states such as

∏
k c

†
k|0〉 are clearly

mapped by � onto product qubit states.
It is important to keep in mind that for charged and/or massive fermions, the Fock space is

not the state-space of any physical system. Indeed, at variance with massless neutral particles,
e.g., photons, only eigenstates of N̂ = ∑L

l=1 c
†
l cl are allowed physical vectors and, for the

same reason, only operators commuting with N̂ could be physical observables. This of course
is nothing but a superselection rule, i.e. HF = ⊕L

N=0HF (N), that does not allow for linear
superposition of states corresponding to different charge/mass eigenvalues [26].

Despite the above considerations, we note that in some situations one is led to attribute to
the whole Fock space some physical meaning. This happens for systems in a symmetry broken
phase. For example, in superconductivity and superfluidity the order parameter corresponds
to an expectation value of an operator connecting different N-sectors. It follows that the
associated mean-field Hamiltonian does not commute with N̂ .

Of course one can argue that this kind of violation occurs on a level that does not have any
deep physical significance, after all the mean-field approach is just a variational one aimed
at producing a good approximation to physical expectation values. According to this view,
therefore, the properties, e.g., entanglement, of the ansatz states should not to be taken too
seriously. Nevertheless, we think that this issue has some interest and the relations between
pairwise entanglement and superconductivity will be provided before the conclusions.

3. Itinerant systems

Let us now consider free spinless fermions in a lattice. The Hamiltonian is given by

H = −t

L∑
l=1

(
c
†
l cl+1 + c

†
l+1cl

) − µ

L∑
l=1

c
†
l cl (4)

with the periodic boundary condition. Here t represents the hopping integral between sites
and µ is the chemical potential.

It is known that the eigenvalue problem of H can be solved by a discrete Fourier
transformation (DFT)

cl = 1√
L

L∑
k=1

ωlkc̃k (5)

where ω = exp(i2π/L). After the DFT, the Hamiltonian (4) becomes

H = −2t

L∑
k=1

cos(2πk/L)c̃
†
kc̃k − µN̂ (6)

where N̂ = ∑L
k=1 c̃

†
kc̃k = ∑L

l=1 c
†
l cl is the total fermion number operator. From equation (6),

we immediately obtain the eigenvectors

|kN 〉 = c̃
†
k1

c̃
†
k2

, . . . , c̃
†
kN

|0〉 kN = (k1, k2, . . . , kN ) ∈ ZN (7)

and the corresponding eigenvalues

EkN
=

N∑
l=1

(
εkl

− µ
)

εkl
= −2t cos(2πkl/L). (8)
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Associated with the new fermionic modes c̃k there is a tensor product structure for the
Fock space. The latter is defined by the mapping

�DFT :=
L∏

k=1

(
c̃
†
k

)nk |0〉 �→ L⊗
k=1

|nk〉. (9)

Obviously since the eigenstates |kN 〉 are products with respect the tensor product structure
due to �DFT the entanglement in the eigenstates (7) is always zero. However, entanglement
associated with map � may exist in the eigenstates. For instance, the concurrence C = 2/L

for any pair of fermions when N = 1. The corresponding eigenstates are called W states
[16, 27, 28].

3.1. Entanglement in the eigenstates

In order to make an analysis of the entanglement of our spinless fermions we will use the
notion of concurrence [29]. This is a simple measure for two qubits that allows us to quantify
the entanglement between any pair of fermions by our mapping.

We define the reduced density matrix associated with the first and second LFMs as ρ(12) ∈
End(C4). Note that the Hamiltonian is translation invariant, therefore entanglements between
nearest-neighbour fermions are identical. Due to the fact that [N̂,H ] = 0, the reduced density
matrix has the following form:

ρ(12) =




u

w1 z

z∗ w2

v


 . (10)

The nonvanishing relevant matrix elements of ρ(12) are given by (〈·〉 denotes the
expectation value over ρ),

u = 1 − 2〈N̂〉/L + 〈n̂1n̂2〉 v = 〈n̂1n̂2〉 z = 〈
c
†
1c2

〉
. (11)

The concurrence of ρ(2) is then given by [13]

C = 2 max{0, |z| − √
uv}. (12)

As the matrix elements w1 and w2 do not appear in the concurrence (12), their expressions
are not given in this paper. From equations (11) and (12) it follows that, in order to obtain
the concurrence, we need to compute the correlation functions 〈n̂1n̂2〉 and

〈
c
†
1c2

〉
and the mean

fermionic number 〈N̂ 〉. For the eigenstate |kN 〉, after direct calculations3, we obtain

u = (n − 1)2 − ∣∣SkN

∣∣2
v = n2 − ∣∣SkN

∣∣2
z = SkN

(13)

where n = N/L is the filling and

SkN
= L−1

N∑
l=1

ωkl = L−1
N∑

l=1

eikl2π/L. (14)

By combining equations (12) and (13) one gets the concurrence between two LFMs,

C = 2 max

{
0,

∣∣SkN

∣∣ −
{[

(n − 1)2 − ∣∣SkN

∣∣2
] [

n2 − ∣∣SkN

∣∣2
]}1/2

}
(15)

3 From equation (5) we can express the operators n̂1 n̂2 and c
†
1c2 in terms of Fourier fermionic creation and annihilation

operators. Then the relation 〈c†k1ck2c
†
k3ck4〉 = (δk1,k2 δk3,k4 − δk1,k4 δk3,k2 )n1n2 + δk3,k2 δk1,k4 n1) is used where the

averages are taken in the eigenstate |kN 〉.
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Figure 1. The concurrence as a function of the filling n in an infinite lattice.

which is determined only by the filling and the correlation function
〈
c
†
1c2

〉 = SkN
. This latter

quantity is obviously related to the ‘itinerancy’ of the state, i.e. how fermions propagate. It
follows that the concurrence (15) contains direct information about the conducting properties
of the given quantum state.

From equation (15) one can directly see that there exists entanglement if the correlation
function z and the filling factor n satisfy the equation |z|4 − 2(n2 − n + 1)|z|2 + (n2 − n)2 < 0.
Then we obtain that there exists pairwise entanglement between two LFMs in the eigenstates if
|z|2 is in the range n2 −n+1−√

2n2 − 2n + 1 < |z|2 < n2 −n+1+
√

2n2 − 2n + 1. In the case
of N = 1,

∣∣SkN

∣∣ = n = 1/L, and therefore C = 2/L [16, 27, 28]. For L = 2, this state is
maximally entangled. In the trivial case N = 0, there is no entanglement at all. Now we
consider the case N = L, i.e. the lattice is fully filled. Now

∣∣SkN

∣∣ = 0, and hence C = 0. For the

half filling (n = 1/2), u = v and equation (15) reduces to C = 2 max
{
0,

∣∣SkN

∣∣+
∣∣SkN

∣∣2 −1/4
}
.

Then the entanglement exists if and only if (
√

2 − 1)/2 <
∣∣SkN

∣∣ � 1/2.
Now we consider the ground state |G〉 of the system. It is obtained by filling

the lowest single particle energy levels. By taking, for simplicity, N odd one has
|G〉 = c

†
k0

∏N/2−1
n=1 c

†
kn

c
†
−kn

|0〉 (kn = 2πn/L). From this definition it follows that SG =
L−1

(
1 + 2� ∑N/2−1

n=1 ωn
) = 2L−1[cos(π(N/2 − 1)/L) sin((N/2 − 1))/ sin(π/L) − 1]; now

taking the limit L �→ ∞, N/L �→ n, the resulting expression is given by

SG(n) = 1

π
sin(πn) (16)

where we have used limL→∞ L sin(π/L) = π. Moreover, from the inequality SG � n(1−n) it
follows that the second argument of the max function in equation (15) is always non-negative
and we can get rid of the maximization. the concurrence then becomes

C = 2{sin(πn)/π − [(n − 1)2 − sin2(πn)/π2]1/2[n2 − sin2(πn)/π2]1/2} (17)

in the infinite lattice. Figure 1 shows the concurrence as a function of the filling n in the infinite
lattice. We see that the entanglement becomes maximal at half filling for two neighbouring
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fermions, and the entanglement is symmetric with respect to the point of half filling. At the
point of half filling the concurrence simply becomes C = 2/π + 2/π2 − 1/2 ≈ 0.339 262.

The property of symmetry can also be seen directly from equation (17) as the concurrence is
invariant if we make the transformation n �→ 1 − n.

For zero chemical potential, i.e. half filling, there exists a direct relation between the
concurrence and the ground state energy density ε0. Indeed, from translational symmetry
of the Hamiltonian one has

〈
c
†
1c2

〉 = −1/2tL〈H 〉 = −1/2tε0(n), where we have used even

the reality of
〈
c
†
1c2

〉
. This relation, which can be extended to finite temperature as well, is

in a sense remarkable in that it connects entanglement with a thermodynamical quantity that
depends on just the partition function of the system. The latter is determined just by the
Hamiltonian spectrum, whereas computing concurrence also requires, in general, knowledge
of the eigenstate. This kind of connection between entanglement and thermodynamical
quantities has been discussed even for spin chains, both zero [13] and finite temperature [30].

3.2. Thermal entanglement

In this section we extend our analysis to the entanglement at a finite temperature. The
state of fermions at thermal equilibrium is described by the following Gibbs grand-canonical
state:

ρT = 1

Z

∑
kN

exp
(−βEkN

) |kN 〉〈kN | (18)

where β = 1/kT , k is Boltzmann’s constant, and the partition function Z is given by

Z =
∑
kN

exp
(−βEkN

) =
L∏

k=1

[1 + e−β(εk−µ)]. (19)

The average occupation number 〈nk〉 is given by

〈nk〉T = 1

eβ(εk−µ) + 1
(20)

which is the Fermi–Dirac distribution. The expectation value 〈N̂〉 is then easily obtained as
〈N̂〉 = ∑L

k=1〈nk〉.
The reduced density matrix ρ

(12)

T associated with �DFT will be a 4 × 4 diagonal matrix.
Then from equation (12), the concurrence is zero for any pair of LFMs. So we will discuss the
entanglement associated with the map �. The form of the reduced density matrix in the state
ρT is then given by equation (10) and the concurrence is given by equation (12). Now we need
to calculate the correlation functions in equation (11) for the state ρT . The result is readily
obtained from equation (13) by replacing the eigenvalues of the nk with the corresponding
thermal averages:

〈
c
†
1c2

〉 = L−1
L∑

k=1

ωk〈nk〉 〈n1n2〉 = 〈N̂〉2/L2 − ∣∣〈c†1c2
〉∣∣2

. (21)

Then the exact expression for the concurrence is given by the combination of equations
(11), (12) and (21). Note that the concurrence is thus obtained in an analytical form for
arbitrary N. To exemplify this result let us first consider the simple case of L = 2. For two
sites, from equations (11), (12) and (21), the concurrence is given by

C = max{0, sinh(2β|t|) − 1}
cosh(βµ) + cosh(2βt)

(22)
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Figure 2. The concurrence as a function of the temperature and the mean fermion number for
L = 2 and t = 1.

Table 1. The concurrence for three special values of mean fermion number.

〈N̂〉 µ C

0 −∞ 0

1 0 max
[

sinh(2β|t|)−1
cosh(2βt)+1 , 0

]
2 ∞ 0

which is similar to the concurrence in a thermal state of the two-qubit XX model [16]. For
three special values of 〈N̂〉, we have table 1, from which we see that there is no entanglement
when the chemical potential is ∓∞ (the corresponding mean fermion numbers are 0 and 2).
The entanglement is maximal when µ = 0 and other parameters are fixed. The mean fermion
number is simply given by

〈N̂〉 = eβµ + cosh(2βt)

cosh(βµ) + cosh(2βt)
(23)

from which we obtain µ = β−1 ln{(2−〈N̂〉)−1{cosh(2βt)(〈N̂〉−1)+[cosh2(2βt)(〈N̂〉−1)2 +
2〈N̂〉 − 〈N̂〉2]1/2}}. From this relation and equation (22) one can calculate the concurrence
as a function of temperature and the mean fermion number 〈N̂〉. This function is represented
in figure 2. We observe that the entanglement becomes maximal when the mean fermion
number is 1 for fixed temperature T. Let us first comment on the n �→ 1 − n, or in view of
equation (22) equivalently µ �→ −µ, symmetry of the function C. This fact can be understood
from equation (12). Clearly the only thing to check is that |z(t, µ)| = |z(t,−µ)|. This
latter statement easily follows by the use of particle–hole transformation, i.e. cj ↔ c

†
j (j =

1, . . . , L), realizing z(t,−µ) �→ z(−t,−µ) along with the unitary mapping cj �→ (−1)j cj

that, for bi-partite lattices, changes the sign of t . Another important feature is the existence of a
threshold temperature, above which the entanglement disappears. Remarkably this threshold
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Figure 3. The concurrence as a function of the temperature for different µ: µ = 0.1 (crosses),
µ = 1.0 (circles), and µ = 2.0 (diamonds). The parameter L = 100.

temperature is independent of the mean fermion number. This phenomenon is related to the
independence of an external magnetic field displayed by the associated spin model [15, 16].

For large L, we plotted in figure 3 the concurrence as a function of temperature for
different µ. We observe that the threshold temperature is independent of µ. Moreover, it is
worth noting that for sufficiently high µ, i.e. filling, one has a non-monotonic behaviour of
the concurrence as a function of T. Indeed we see that the entanglement can initially increase
as the temperature is raised. This phenomenon is due to the fact that the chemical potential
in fermionic systems plays a role analogous to the external magnetic field Bz for spin systems
[15]. When Bz is large enough the ground state is given by a product state (all the spins
aligned), hence entanglement in the thermal state is due to the excited eigenstates. Of course
for T large enough one always get C = 0 in that the Gibbs state is approaching the maximally
mixed state.

4. Entanglement and superconductivity

In this section we discuss fermionic entanglement in simple superconducting systems and
explore the relations between entanglement and superconducting correlations. Let us first
consider a BCS-like, i.e. mean-field model.

4.1. BCS-like superconductivity

The following BCS-like Hamiltonian describes the pairing between fermions carrying
momentum k and −k,H = ∑

k Hk,

Hk = εk(nk + n−k − 1) + 
kc
†
kc

†
−k + 
̄kckc−k. (24)

The quantities 
k = |
k| eiφk are order parameters of conductor–superconductor phase
transitions. They are determined by the self-consistent relations 
k = 〈ckc−k〉, and
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Figure 4. The order parameter (crosses) and the concurrence (boxes) as a function of the
temperature. The parameter εk = 0.

above a critical temperature they vanish, thus signalling the absence of superconducting
correlation.

The structure of equation (24) clearly suggests that the relevant tensor-product structure
of this problem is given by HF

∼= ⊗k (hk ⊗ h−k), where hk := span
{(

c
†
k

)α|0〉/α = 0, 1
}
.

Moreover, it is very simple to check that for any k, the operators Jk := nk + n−k − 1, J +
k :=

c
†
kc

†
−k, J

−
k := c−kck span an su(2) Lie-algebra. The states |αα〉 := |α〉k ⊗ |α〉−k (α = 0, 1)

realize a spin-1/2 representation of such an algebra. Therefore, the Hamiltonian (24), which
it is equivalent to a spin-1/2 particle in an external magnetic field along the x direction, is
readily diagonalized. For example, if we define θk := tan−1 |
k|/εk, the ground state is given
by ⊗k|−〉k where

|−〉k := cos(θk/2)|00〉k − eiφk sin(θk/2)|11〉k. (25)

It corresponds to the eigenvalue Ek− = −Ek. Here Ek =
√

ε2
k + |
k|2. The self-consistent

equation for the 
k reads

|
k| = sinh(βEk) sin(θk)

2[cosh(βEk) + 1]
. (26)

The concurrence associated with the thermal state ρk(β) := exp(−βHk)/Z is given by

C = max{0, sinh(βEk) sin(θk) − 1}
cosh(βEk) + 1

. (27)

In the limit T → 0, the concurrence becomes sin(θk) which is just the concurrence of the
ground state |−〉k. By solving these equations the numerical results are given in figure 4. One
can see that the concurrence goes to zero at a temperature slightly lower than the superconductor
critical one. Since in the temperature range [0, Tc] the function 
k(T ) is invertible one can
express the concurrence as a function of the order parameter only. This is illustrated in figure 5
which shows that it is necessary to have a certain amount of superconducting correlation
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Figure 5. The concurrence against the order parameter. The parameter εk = 0.

in order to have a pairwise entangled thermal state. Note that we set εk = 0, which in a
grand-canonical picture (εk �→ εk − µ) corresponds to half filling4.

We would like to observe now that a non mean-field Hamiltonian formally analogous
to (24) plays an important role in the excitonic proposal for QIP by Biolatti et al [31]. In
that case the fermionic bilinear terms c

†
kc

†
−k are replaced by Xi := c

†
l d

†
m (i := (l,m)) where

c
†
l

(
d
†
m

)
creates an electron (hole) in the lth (mth) state of the conduction (valence) band of

a semiconductor. The order parameter 
k becomes a (independently controllable) coupling
to an external laser field. The excitonic index l can be associated with L different, spatially
separated, quantum dots; this implies that l �= l′ ⇒ [Xl,Xl′ ] = 0. Let |0〉 denote the particle–
hole vacuum (ground state of the semiconductor crystal). Since X2

l = 0 one immediately
sees that the ‘excitonic Fock space’ span

{∏
lX

nl |0〉/nl = 0, 1
}

is isomorphic to a L qubit
space [23]. This example shows that one can consider spaces allowing for a varying number
of ‘particles’ that nevertheless are fully legitimate quantum state-spaces. No super-selection
rule violation (possibly due to spontaneous symmetry-breaking) has to be invoked. Next we
consider another kind of non mean-field superconductivity, i.e. the η-pair superconductivity.

4.2. η-pair superconductivity

Yang [22] discovered a class of eigenstates of the Hubbard model which have the property of
off-diagonal long-range order (ODLRO) [32], which in turn implies the Meissner effect and
flux quantization [33]. Let us begin by introducing the η-operators

η =
L∑

j=1

cj↑cj↓ η+ =
L∑

j=1

c
†
j↓c

†
j↑ ηz = L

2
−

L∑
j=1

nj (28)

which form the su(2) algebra and satisfies [η, η†] = 2ηz, [η±, ηz] = ±η±. Here the fermions
have spins and the operator nj = c

†
j↓cj↓ + c

†
j↑cj↑. The operators η± also satisfy the relations

4 This is immediately seen from the equation Tr[ρk(nk + n−k)] = 1 − 2 cot θk |
k |.
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(η±)L+1 = 0, which reflect the Pauli principle, i.e. the impossibility of occupying a given site
by more than one pair c

†
j↓c

†
j↑.

In this context the relevant state-space is the one spanned by the 2L basis vectors

|n1, . . . , nL〉 =
L∏

l=1

(
c
†
l↓c

†
l↑

)nl |vac〉 (nl = 0, 1 ∀l). (29)

From the above basis it is evident that the space span{|n1, . . . , nL〉} is isomorphic to the L-qubit
space. This is easily seen by defining the mapping

�′ := |n1, . . . , nL〉 �→ L⊗
l=1

|nl〉 = L⊗
l=1

(
σ +

l

)nl |0〉. (30)

Then we can produce L ‘number’ states |N〉 by applying successive powers of η+ on the
vacuum state defined by η|0〉 = 0. So

|N〉 = N−1/2η+N |0〉 N = 0, . . . , L (31)

where N = L!N!/(L − N)!. The span of the |N〉 (N = 0, . . . , L), known as η-paired states,
forms an irreducible spin-L/2 representation space. As mentioned above, what makes the
number states interesting is the fact that they have been shown to have ODLRO. Indeed, from
equation (31) the following distance-independent correlation function is obtained

ON,L = 〈N |c†j↓c
†
j↑cl↑cl↓|N〉 = N(L − N)

L(L − 1)
. (32)

In the thermodynamical limit (N,L → ∞ with N/L = n) ON,L goes to n(1 − n), which is
nonvanishing as |j − l| → ∞. In other words, the number state exhibits ODLRO, and thus is
superconducting.

The two-site reduced density matrix has the form (10) in which

u = (L − N)(L − N − 1)

L(L − 1)
z = ON,L v = N(N − 1)

L(L − 1)
. (33)

From these relations and equation (12), one finds

C = 2

{
ON,L −

[
ON,L

(N − 1)(L − N − 1)

L(L − 1)

]1/2
}

. (34)

Note that the above formula could have been directly obtained from [17] where the
entanglement between any pair of qubits in a Dicke state has been computed. Indeed by
means of the mapping (30), one can identify the number state with the usual Dicke state.

In the thermodynamical limit one has u �→ (1 − n)2, v �→ n2, z = ON,L �→ n(1 − n);
thus, from equation (12) the entanglement becomes zero. So we see that pairwise quantum
entanglement does not exist although we have η-pairing superconductivity in the number state.
We finally note that in the η-pair coherent states discussed in [34], there is ODLRO, but being
a product there is obviously no entanglement.

5. Conclusions

The Fock space of many local fermionic modes can be mapped isomorphically onto a many-
qubit space. Using such a mapping we studied entanglement between pairs of (spinless)
fermionic modes. This has been done both for the eigenstates and for the thermal state for a
model of free fermions hopping in a lattice (entanglement between local modes as a function
of temperature and filling). In the free fermionic model we analysed entanglement between
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local modes as a function of temperature and filling. In particular, we found that above a
threshold temperature the thermal state becomes separable.

We studied the relations between pairwise entanglement and the superconducting
correlation in both the BCS-like model and η-pair superconductivity. For the BCS-model, a
finite value of the superconducting-order parameter is required to obtain entanglement in the
thermal state. Note that this last statement establishes a direct connection between quantum
entanglement and a real phase transition [35]. For η-pair superconductivity we found that
pairwise entanglement is not a necessary condition for the superconductivity.

Despite their simplicity, our results seem to suggest that the quantum information-theoretic
relevant notion of quantum entanglement can provide useful physical insights into the physics
of many-body systems of indistinguishable particles.
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